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Abstract

The emergence of cross-modal foundation models has in-
troduced numerous approaches grounded in text-image re-
trieval. However, on some domain-specific retrieval tasks,
these models fail to focus on the key attributes required. To
address this issue, we propose a self-enhancement frame-
work, A3R, based on the CLIP-ViT/G-14, one of the largest
cross-modal models. First, we perform an Attribute Aug-
mentation strategy to enrich the textual description for fine-
grained representation before model learning. Then, we
propose an Adaption Re-ranking method to unify the repre-
sentation space of textual query and candidate images and
re-rank candidate images relying on the adapted query af-
ter model learning. The proposed framework is validated
to achieve a salient improvement over the baseline and
other teams’ solutions in the cross-modal image retrieval
track of the 1st foundation model challenge without intro-
ducing any additional samples. The code is available at
https://github.com/CapricornGuang/A3R.

1. Introduction

Image retrieval has been widely applied in automatic
public video surveillance that obtains several relevant im-
ages from vast image databases based on user queries [3].
Traditional retrieval methods rely on attribute recognition
to identify the desired images [6, 9], which struggle to han-
dle the customized retrieval query and thus lack the flexibil-
ity to various user needs. Recently, cross-modal foundation
models have gained popularity for their ability to unify text
and image representations [1,7,10], the large-scale pretrain-
ing data equips them with the generalization ability to han-
dle a wide range of real-world scenes, so as to enable them
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Figure 1. Raw images and their corresponding attention maps
of CLIP-ViT/G-14 before and after self-enhancement. Before
attribute augmentation, the model primarily attends to sample-
specific features, such as vehicle accessories, license plates, and
human heads. But after attribute augmentation, the model demon-
strates a notable shift towards class-specific features, specifically
vehicle logos, human attire, and backpacks.

with seamless translation between text and images, enhanc-
ing the flexibility and adaptability of the retrieval process.

However, as shown in Figure 1, on some class-specific
retrieval tasks, the large-scale pretraining makes these foun-
dation models focus more on the sample-specific attributes
rather than the class-specific attributes required. To address
this issue, we propose a self-enhancement framework in
this work, aiming to deploy the visual-language foundation
model in the context of traffic retrieval to further improve
the accuracy of text retrieval for images. We perform data
and retrieval augmentation before and after model learning,
respectively: (i) We recognize that the most valuable infor-
mation benefiting fine-grained retrieval is the attribute de-
scription, so we utilize the rich prior knowledge of founda-
tion models to perform zero-shot Attribute Augmentation
to augment the textual description with various attributes;
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Figure 2. Full pipeline of A3R framework. Attribute Augmentation and Adapation Re-ranking are our self-enhancement method.

(ii) We note that similarities between candidate images of-
ten overshadow the similarities between images and textual
queries in cross-modal retrieval, so we propose the Adap-
tion Re-ranking method to extract query-specific informa-
tion from candidate images and instead leverage the origi-
nal textual query as a similarity constraint. We first align
the representation space between the re-ranking query and
candidate images, then perform cross-modal re-ranking to
retrieve the final expected images. By combining these two
strategies, We name our framework A3R. Experiments
show that our A3R framework enables models to achieve
salient improvements over the pure fine-tuning paradigm.

2. A3R: Self-Enhancement Framework
We resort to CLIP-ViT/G-14 [10] for our backbone

(§2.1), which achieves dramatic cross-modal performances
in many tasks. However, it performs poorly in domain-
specific tasks like cross-modal retrieval. Therefore, we pro-
pose a zero-shot self-enhancement framework based on at-
tribute augmentation (§2.2) and adaption re-ranking (§2.3)
to improve the capability of fine-tuned visual-language
models. Figure 2 illustrates our framework.

2.1. Architecture and Formulation

We formulate each sample as a package of image, text,
and attribute (I, T,A), where attributions can be viewed as
the subset of texts that present the most distinguishing in-
formation, such as “color”, etc. First, I and T are input

to image and text encoders, respectively, which are both
transformer-based modules generating image and text em-
beddings wI and wT . Then, contrastive learning is em-
ployed in the following training. Specifically, assume that
N encoded samples {(wI

i , w
T
i )}Ni=1 are processed in paral-

lel. Let image embedding matrix be MI = {wI
i }Ni=1 and

text embedding matrix be MT = {wT
i }Ni=1, then the text-

image similarity matrix F are formulated as

F = (MI)(MT )
′ ∈ RN×N . (1)

The fine-tuning target is to maximize N matched pairs’ sim-
ilarity and minimize that of N2 −N mismatched pairs.

2.2. Attribute Augmentation

We note that the most valuable information in the texts is
the attributes. However, they are often missing in the labels
of vehicle datasets. Therefore, we perform zero-shot data
augmentations aimed at filling in the missing attribute ele-
ments in the samples. We focus on three attribute elements:
color, brand, and type. For the missing attribute element,
we exhaust all possible cases of this attribute element and
concatenate them after the existing text T , respectively, and
then pass all concatenated text and the corresponding only
image into the CLIP-ViT/G-14 model to obtain embeddings
of the image and all texts. We select the text with the highest
image-text cosine similarity as the augmented text T .



2.3. Adaption Re-ranking

Re-ranking is vital for improving retrieval performance
[2]. This process typically involves two key steps: re-
sorting query embedding and similarity refinement. How-
ever, in cross-modal retrieval, the re-sorting query can
not be directly taken from the textual query due to the
contrastive-based language-image alignment strategy. This
strategy aligns different modalities without emphasizing the
need for shared representation spaces, leading to the simi-
larities between candidate images often overshadowing the
similarities between images and textual queries.

To address this, we propose Adaption Re-ranking, a
plug-and-play non-parameter modal adapter utilizing sin-
gular vector decomposition (SVD) to extract query-specific
information from candidate images considering the text-
image similarity. Specifically, given the encoded textual
query embedding Mq = {wT

0 } and M candidate encoded
image embeddings Mc = {wI

i }Mi=1 processed in parallel,
we first compute the query-candidate similarity as follows:

S = (Mc)(Mq)
′ ∈ RM×1. (2)

To simplify computations, we broadcast the query-
candidate similarity metric S into S̃ = {S}Di=1 ∈ RM×D.
SVD is then performed on Mc under the constraint of simi-
larity S, yielding:

Ms = Mc ⊙ S̃ = UΣV T , (3)

where U ∈ RM×M , V ∈ RD×D are unitary matrixes, and
Σ ∈ RM×D is a diagonal matrix whose diagonal entries
correspond to the singular values of Ms sorted in descend-
ing order. By utilizing the column vector U1 ∈ RM×1 of U
w.r.t. the largest singular value, the principal vector of the
encoded candidate images M∗

q ∈ R1×D can be represented
as M∗

q = U ′
1Mc, which is used as the re-ranking query.

Subsequently, we incorporate the k-reciprocal encoding
algorithm [5] to further refine the re-ranking results. The
k-reciprocal encoding algorithm is a well-established re-
ranking technique. It aims to calculate a new similarity
measure between a query image and a candidate image,
based on their k-reciprocal nearest neighbors:

M∗
c = k-reciprocal(M∗

q ,Mc). (4)

3. Experiments
3.1. Setup

Dataset. We use the open-source PA100k pedestrian
dataset [4] and the BIT-Vehicle vehicle dataset [8]. Unlike
previous approaches relying on one-hot encoded attribute
labels, these datasets incorporate attribute-level natural lan-
guage text annotations corresponding to the images. The
pedestrian dataset is constructed by human images of 21

unique attributes concerning sex, dress, and walking posi-
tion, while the vehicle dataset contains auto images of 11
colors, 6 vehicle types, and 65 vehicle brands. We note that
the vehicle images in the test set were obtained through web
scraping, resulting in significant variations in data distribu-
tion, while that of pedestrian images is relatively consistent.

Metric. The evaluation metric used is the mean Average
Precision (mAP@K). Here, K indicates that the topK re-
trieval results are used in the evaluation. The calculation of
mAP@K is as follows:

mAP@K =
1

m
∗

K∑
i=1

p(i) ∗∆r(i), (5)

where m is the total query times in the evaluation set, p(i)
and r(i) denotes the precision and recall of the topi retrieval
results, respectively, ∆r(i) = r(i)−r(i−1), and r(0) = 0.

Implementation. We adopt the 2B-parameter CLIP-
ViT/G-14 [10] as our backbone. To address the variations in
image proportions between vehicles and pedestrians, we ap-
ply zero-padding and resize all images to a size of 224. The
training process utilizes the Adam optimizer with a batch
size of 25. Given the significant distribution disparities be-
tween the training and test sets, the performance improve-
ment on the validation set can not be reflected on the test
set directly. Therefore, we employ a small learning rate of
4e-7 and perform only 5 epochs of fine-tuning. The training
process utilizes one A100 GPU, while the inference process
is executed on one NVIDIA RTX 3090 GPU.

3.2. Main Results

The leaderboard ranking is determined based on the cal-
culation of mAP@10. Our competition performance is
shown in Table 1. Our proposed method ranks 6th on the
leaderboard with a score of 0.75027 without introducing
any additional datasets. These results indicate that A3R can
capture both textual and visual information, enabling accu-
rate retrieval in real-world scenarios.

Rank Team Name Score Rank Team Name Score

1 MiniModel 0.82382 6 IPCL(ours) 0.75027
2 njust 0.82223 7 VIPS 0.74710
3 DiamondH 0.81990 8 432 0.73654
4 CASHIPS 0.76865 9 BBH∼ 0.72753
5 HZHv2 0.76268 10 mARapper 0.72697

Table 1. Leaderboard A of the Cross-modal Track in the Founda-
tion Model Challenge.

3.3. Analysis

Re-ranking. Figure 3 illustrates the effect of the re-
ranking algorithm. As shown in sub-figure (a), the vanilla
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Query: A male pedestrian aged between 18 and 60, facing the camera with 
a shoulder bag, wearing a short-sleeved shirt with an upper plaid pattern.

Figure 3. Visualization of the re-ranking algorithm. indicates
the query-matched objects.

searching results have been already accurate to some extent,
but some relevant objects are not ranked at the top. Com-
paring sub-figure (b) and (c), we observe that the proposed
adaptation re-ranking strategy effectively promotes lower-
ranked target samples to higher positions, as shown by the
solid lines in the figure. Furthermore, our method can fur-
ther improve the retrieval performance by fine-tuning the al-
ready well-ranked correct retrievals, as shown by the dashed
lines in the figure.

Model Parameter. Figure 4 illustrates the performance of
CLIP based on ViT/L-14, ViT/g-14, and ViT/G-14. ViT/g-
14 exhibits approximately five times higher computational
complexity than ViT/L-14, while ViT/G-14 shows a seven-
fold increase. Analyzing the performance increase at each
expansion fold, we observe a slight decline in performance
improvement from the second expansion compared to the
first expansion (2% → 1.8%). Considering the challenge
associated with ultra-large models, this evidence indicates
that current visual foundation models have room for im-
provement before reaching their performance limits.

4. Conclusion

This paper explores a new avenue to improve the per-
formance of foundation models with their inner knowledge,
so-called “self-enhancement”. The proposed A3R frame-
work performs zero-shot attribute augmentation to augment
the downstream dataset before model learning while har-
nessing the internal relationship between the text and image
representation space to conduct cross-modal re-ranking to
retrieve the final expected images. This self-enhancement
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Figure 4. Comparison of the mAP@10 metric of backbones of
different parameter sizes.

framework can be transferred to any cross-modal retrieval
scenario with good domain generality.
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