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Abstract

Recent label mix-based augmentation methods have
shown their effectiveness in generalization despite their sim-
plicity, and their favorable effects are often attributed to
semantic-level augmentation. However, we found that they
are vulnerable to highly skewed distribution, because scarce
data classes are rarely sampled for inter-class perturbation.
We propose a text-driven manifold augmentation that seman-
tically enriches visual feature spaces, regardless of data dis-
tribution. Our method augments visual data with intra-class
semantic perturbation by exploiting easy-to-understand vi-
sually mimetic words, i.e., attributes. To this end, we bridge
between the text representation and a target visual feature
space, and propose an efficient vector augmentation. Our
experiments demonstrate that the proposed method is pow-
erful in scarce samples with class imbalance. Note that this
research is a work in progress.

1. Introduction
The effectiveness of label mix-based approaches, such

as Mixup [14], CutMix [13], and manifold Mixup [11], is
attributed to semantic perturbation by label mixing. How-
ever, we found that the performance of mix-based augmen-
tation methods is noticeably degraded when training with
skewed class distribution having scarce samples for non-
major classes. This motivates us to seek a semantically rich
data augmentation effective for long-tailed distribution.

In this work, we propose a text-driven manifold augmen-
tation, effective for long-tail datasets. We hypothesize that
general language models, e.g., BERT [3] or GPT [9], learn
visual information to some extent. With this hypothesis, we
semantically enrich the target visual feature space by lever-
aging visually mimetic texts, encoded with general language
models and transferred to the target space. Specifically, our
method encodes meaningful attributes such as “red” and
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Figure 1. Illustration of the proposed method. Our method aug-
ments the target visual feature by leveraging text embedding of the
visually mimetic words, which are comprehensible and semanti-
cally rich. For example, when the text of the existing class “bull”
is manipulated as “red bull” by adding the attribute “red,” we can
get augmented visual features by reflecting the difference of text
embeddings. In this way, our method densifies sparse visual feature
space using various attributes text.

“large” to vectors by computing the difference between text
embeddings with and without attributes. We add the attribute
embeddings to target visual features to mimic those attributes
on the visual feature space. the augmentation process of the
proposed augmentation is illustrated in Fig. 1. The input
feature (e.g., the visual feature of “bull”) is manipulated by
adding the attribute vector induced by the attribute text (e.g.,
“red”), which yields the augmented visual feature (e.g., “red
bull”). Thanks to the text modality properties, the augmen-
tations by our method are symbolic, human-interpretable,
and easily controllable. Also, our method perturbs data in an
intra-class way. It means our method can densify around the
training samples by extrapolating the class semantics along
augmented semantic attribute axes.

To empirically support that our attribute vector estima-
tion with text embedding is reasonably designed, we analyze
the embedding space with t-SNE, which demonstrates that
attribute vectors lead to visually interpretable manifold aug-
mentation of input. We also evaluate our method image clas-
sification with long-tail datasets. Our experiments demon-
strate that our method is an effective and model-agnostic
data augmentation method, especially in scarce data cases,



by exploiting the favors of zero-shot attributes. Our key
contributions are summarized as:

• We propose an augmentation method that enriches the
visual features by conveying attribute information from
the text embedding to the target visual feature space.

• We demonstrate that our method is especially helpful in
augmenting sparse samples in long-tail class cases.

2. Related Work

Image Data Augmentation. Data augmentation having se-
mantic perturbation, such as Mixup [14], CutMix [13], and
manifold Mixup [11], execute semantic perturbation along
with label mixing. While the mixed label is known to be
effective for generalization and model calibration effects [4],
we found that the mix-based methods are heavily affected
by class distribution due to sampling from two sources. Our
method, on the other hand, is applied to all of the given sam-
ples uniformly regardless of class distribution. The proposed
method densifies around the sample features by perturbing
and enriching the semantic meaning of them at an intra-class
level, which does not change the label.
Foundation Models. Recent foundation models have
shown a successful case of reflecting human nuances with
visually imitated word composition. Particularly, language
models, e.g., BERT [3] and GPT [9], show their ability not
only in language tasks but also in vision-language multi-
modal tasks [10]. CLIP [8] also achieves huge success in
various tasks [12] even in zero-shot recognition. In our
method, we focus on estimating attribute features by exploit-
ing BERT, GPT-2, or CLIP text encoder alone. Differ from
knowledge distillation of foundation models [2], we only
transfer the estimated attribute feature to augment visual
features in a different space.
Long-tail Classification. In real world, visual data fol-
low a long-tailed distribution which induces class imbalance
and leads to performance degrading. The rebalancing meth-
ods [1] resample data or reweights the loss for tail classes,
which have improvement in performance of the tail classes
comes with the sacrifice of head class performance. Note
that our method densifies all the given samples regardless of
the class imbalance, which improves the performance while
minimizing sacrifice of the head class.

3. Text-driven Manifold Augmentation

In image classification, the class label is typically utilized
only as a supervision for measuring the loss. We, instead,
propose to treat the class label as additional text information
and derive semantic information from it. However, class
label as a text description itself is too coarse to represent rich
semantics within a class. To enrich the detailed semantics
over the given coarse class texts, we leverage the attribute
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Figure 2. Overview of Text-driven Manifold Augmentation. Given
flower image I0 and class “flower” T0, we construct the variant
text T1 by adding the attribute “red” on T0. eT0 and eT1 are
computed with text encoders, and their difference vector ∆0→1 =
eT1−eT0 is added to the image feature fI0 after projection proj(·)
and weight α. We make the target feature space semantically
rich and plausible by adding the difference vector, which embeds
interpretable information.

words, such as “small size” and “brown colored,” that can
visually modify objects in images at the semantic level.
Main Idea. The main idea of our text-driven manifold
augmentation is to densify distribution around sparse training
samples on the target feature space, making it semantically
rich through the difference vectors having plausible attribute
information, as in Fig. 1.

Figure 2 illustrates how our method augment data. Sup-
pose we have an image I0 and corresponding class label T0.
The model generally learns the target task using the image
I0 as an input and the class label T0 as supervision. In this
work, we also consider the class label T0 as text information
and extract the embedding vector eT0

∈ Rdc using text en-
coder, e.g., CLIP [8], BERT [3], or GPT-2 [9], where dc is
the text embedding dimension. The text input T0 is formed
with class name and pre-defined prompts. We also synthe-
size text input variant T1 by adding color or size attribute
words (e.g., “red” and “big”) and compute the embedding
vector eT1

∈ Rdc . Based on the word vector analogy1 [7],
we hypothesize that the relationship between T0 and T1 is
maintained in the text embedding space, i.e., the difference
vector ∆0→1 = eT1 − eT0 would contain the information of
added attributes. To exploit the difference vector from text
embeddings, we design our method on the manifold.

To bridge the gap between attribute embedding and visual
feature, we project the attribute embedding to the target fea-

1It was shown that simple algebraic operations can be performed on the
word vectors, e.g., king - man + woman ≈ queen on the embedding space.
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Figure 3. The t-SNE plot of difference vectors (e.g., “brown dog” –
“dog”) projected to visual feature space. The colors of the points
represent color attributes used for computing the difference vector,
and we use all the classes in CIFAR-100 for this plot. As a com-
parison, the colored points in the red circle show direct color-text
embedding (e.g., “brown”) projected to the visual feature space.

ture space with a learnable linear layer proj(·). A mixing
weight α ∈ R is introduced and randomly sampled from the
clamped Normal distribution in the range over 0.1 to inject
the stochasticity. The augmented feature vector f̂I0 is

f̂I0 = fI0 + α · proj(∆0→1). (1)

For the cases having dt = dc, we can set proj(·) operation
to be an identity mapping without any learnable parameter.
The class label of the augmented feature vector is still T0.

Different from knowledge distillation [2], our method
does not transfer-learn the text embeddings directly. Instead,
the difference vector projected onto the target domain is
injected into the target model, allowing our method to be
applied to arbitrary target models. Since the visual feature
augmentation is solely controlled by text, our method is
human-interpretable and easily controllable.

Compared to label mix-based augmentations [11, 13, 14],
our method has advantages in imbalanced data distribution.
If we apply a mix-based method in the long-tailed class distri-
bution, i.e., notably skewed distribution, the class imbalance
is further aggravated, and augmentation is more biased to-
ward major classes. In contrast, our method can equally
densify all the given samples since it augments each sample
independently. Thus, ours can be used in general regardless
of the imbalance factor of class distribution.
Difference Vector vs. Direct Text Embedding. When
guessing the difference between two texts, e.g., “brown X”
– “X,” it would be “brown.” Someone may think of using
the text embedding directly obtained from “brown” instead
of our attribute embedding from “brown X” – “X.” To un-
derstand the difference between the two representations, we
visualize the difference vectors and text embeddings with
BERT and CLIP text encoder in Fig. 3. While the direct text
embeddings in the red circle of Fig. 3 are clustered no mat-
ter with different color-texts, the difference vectors are well
clustered dependent on the color. This observation indicates

(a) Augmentation
Imbalance Factor (IF)

100 50 10

Baseline 38.39 43.33 59.29
Ours (CLIP) 40.65 (+2.26) 46.48 (+3.15) 60.17 (+0.88)
Ours (BERT) 41.10 (+2.71) 47.17 (+3.84) 60.67 (+1.38)
Ours (GPT-2) 41.20 (+2.81) 46.93 (+3.60) 60.94 (+1.65)

Cutmix [13] 37.93 43.34 59.30
Cutmix + Ours 40.22 (+2.29) 45.36 (+2.02) 61.30 (+2.00)

Mixup [14] 36.75 40.77 57.50
Mixup + Ours 38.40 (+1.65) 43.33 (+2.56) 59.80 (+2.30)

ManiMixup [11] 35.72 40.51 55.26
ManiMixup + Ours 38.60 (+2.88) 43.22 (+2.71) 59.35 (+4.09)

(b) Augmentation
Set of Classes (IF=100)

Many Medium Few

Baseline 71.11 38.42 3.00
Ours (CLIP) 71.14 (+0.03) 40.28 (+1.86) 7.53 (+4.53)
Ours (BERT) 70.22 (-0.89) 40.73 (+2.31) 9.41 (+6.41)
Ours (GPT-2) 70.60 (-0.51) 40.61 (+2.19) 9.93 (+6.93)

Cutmix 72.02 37.17 0.90
Cutmix + Ours 72.37 (+0.35) 40.80 (+3.63) 3.90 (+3.00)

Mixup 71.97 33.62 0.36
Mixup + Ours 71.97 (+0.00) 36.77 (+3.15) 1.83 (+1.47)

ManiMixup 72.97 29.51 0.70
ManiMixup + Ours 73.20 (+0.23) 36.80 (+7.29) 0.76 (+0.06)

Table 1. Long-tail classification results (%) on CIFAR-100-LT with
ResNet18. (a) The accuracy with respect to the different imbalance
factors, i.e., IF={100, 50, 10}. (b) The accuracy of each class set
with IF=100. Baseline contains random horizontal flip, random
crop and rotation, and normalization, applied in all experiments.
Ours without parenthesis uses CLIP for the text encoder.

that the difference vector is more effective in augmenting the
visual feature space than text embedding. In addition, the
difference vectors obtained from the same attribute word are
similarly clustered regardless of the class “X” but slightly
different. It may imply our attribute embedding has subtle
difference awareness on granularity according to class.

Note that Fig. 3 presents difference vectors in the visual
feature space, and we also observe similar distributions of
difference vectors in the original text embedding space. This
observation supports our hypothesis that general language
models, e.g., BERT or GPT, have learned visual information
to some extent. It, also, demonstrates the visual information
is properly transferred to the target visual feature space.

4. Experiments

Experimental Setting. We compare our method with
the mix-based augmentations on CIFAR-100-LT [1] and
ImageNet-LT [6], where LT stands for long-tailed distribu-
tion. Long-tail datasets usually have three sets of classes:
Many-shot (more than 100 images), Medium-shot (20-100
images), and Few-shot (less than 20 images). For CIFAR-
100-LT, we control the imbalance factor (IF), the ratio of
samples in the head to tail class, N1/NK , where Nk = |Dk|,
and Dk is the set of samples in class k ∈ {1, · · · ,K}. A



Aug. CBS All Many Medium Few

Baseline 38.39 71.11 38.42 3.00
Cutmix ✓ 38.23 71.77 37.79 1.90
Mixup ✓ 38.73 71.60 37.64 3.16
ManiMixup ✓ 38.56 71.25 37.88 2.80
Ours 40.65 71.14 40.28 7.53

Table 2. Comparison to label mix-based augmentations with class-
balanced sampling (CBS) on CIFAR-100-LT with IF=100. CBS
samples two classes first and then samples data in each classes.

Method Many Medium Few All

LWS [5] 63.34 48.08 27.19 51.14
cRT [5] 61.80 46.20 27.40 49.60
cRT+Ours 62.74 48.60 29.67 51.47

Table 3. Long-tail classification accuracy(%) on ImageNet-LT with
ResNext50. We compare with LWS, cRT, and ours on cRT, and
color the value as best, second best, and third best.

larger value of the IF represents a more severe imbalance
in data. Note that we apply each augmentation on all the
samples without carefully selecting a set of classes.
Results. In Table 1 for long-tail classification on CIFAR-
100-LT, the results show consistent improvement with our
method. Also, our method with various text encoders
achieves analogous improvement trend regardless of the
IF but marginal degradation on Many class (IF=100) when
using BERT or GPT-2. Compared to single usage of mix-
based augmentations, ours shows higher accuracy because
of uniform effects on samples regardless of class imbalance.
The mix-based methods, on the other hand, sample two data
points from the total dataset, where the probability that a tail
class sample contributes to a resulting augmented sample
is very low. Even with class-balanced sampling on mixed-
based augmentation in Table 2, ours performs better, further
demonstrating our effectiveness.

Particularly in Table 1(b), the mix-based methods have
degraded performance in the Medium and Few-shot classes,
while our method improves performance. Combining the
mix-based methods with ours improves overall performance,
but the tendency to sacrifice the Medium and Few-shot
classes is the same as before combining.

In Table 3 for ImageNet-LT, we compare with Learn-
able Weight Scaling (LWS) [5] and classifier Re-Training
(cRT) [5], and our method on cRT. The results show that our
augmentation on cRT achieves the best performance com-
pared to the counterparts in all classes except for the Many
class, wherefrom ours achieves second best. The overall
results indicate that our method is a scalable method not
only effective in neural network training with skewed class
distribution but also in scaling factor learning.

5. Conclusion
We propose a text-driven visual feature manifold augmen-

tation method. Our method densifies around all the given

individual visual features by adding a difference vector stem
from the text embedding. While the mix-based augmen-
tations inflict semantic perturbation in an inter-class way
by label mixing, our method perturbs the semantic mean-
ing of the visual features at an intra-class level, i.e., having
semantic perturbation while maintaining its class. The intra-
class semantic perturbation is achieved by transferring the
attribute-embedded vectors to visual feature space.

To scrutinize the design of our estimated attribute em-
bedding, we conduct analysis with t-SNE plot. The results
empirically demonstrate that our method readily enriches the
sparse samples with comprehensible manipulation, since the
general language models also reflect some extent of visual
information. The experiment on the long-tail classification
validates the effectiveness of our method, especially on the
highly skewed class distribution. In this work, note that we
only use color and size as attributes; thus, there would be
room for further investigation of other effective attributes.
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