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Abstract 

 
The AllInOne training paradigm squeezes a wide range 

of tasks into a unified model in a multi-task learning 
manner. However, optimization in multi-task learning is 
more challenge than single-task learning, as the gradient 
norm from different tasks may vary greatly, making the 
backbone overly biased towards one specific task. To 
address this issue, we propose the task-level backbone-
oriented gradient clip paradigm, compared with the 
vanilla gradient clip method, it has two points of 
emphasis:1) gradient clip is performed independently for 
each task. 2) backbone gradients generated from each task 
are rescaled to the same norm scale. Based on the 
experimental results, we argue that the task-level 
backbone-oriented gradient clip paradigm can relieve the 
gradient bias problem to some extent. We also propose a 
novel multi-branch data augmentation strategy where 
conflict augmentations are placed in different branches. 
Our approach has been shown to be effective and finally 
achieve 1st place in the Leaderboard A and 2nd place in the 
Leaderboard B of the CVPR2023 Foundation Model 
Challenge. It’s worth noting that instead of evaluating all 
three tasks(detection, segmentation and fine-grained 
classification) in Leaderboard A, the segmentation task is 
not evaluated in Leaderboard B, in which our team has a 
huge advantage1. 

1. Introduction 
As ChatGPT become the game changer in the natural 

language processing (NLP) field, foundation model, which 
is defined as “a model that is trained on broad data at scale 
and can be adapted to a wide range of downstream tasks”, 
has become a research hotspot. The most generally used 
training paradigm of foundation model is Self-Supervision 
training at scale, such as Bert[1] in the NLP field, and 
SimCLR[2], MoCo [3] in the computer vision (CV) field, 
these self-supervision foundation model training 
paradigms are usually data hungry, requiring a huge 
amount of data, for example, Bert is pretrained on a  
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3.3 billion corpora, which is unpractical for fast industry 
deployment. Besides, the adaption cost for downstream 
tasks is also inescapable, which usually requires a from-
scratch acquisition of the downstream-task datasets and a 
transfer learning (usually finetune) of the pretrained model 
parameters. Thus, the self-supervision training paradigm of 
foundation model has high requirements for data amount 
and computing power. 
 Due to the inefficiency and huge computation cost of the 
self-supervision pretraining, the AllInOne training 
paradigm is proposed to boost the foundation model 
learning. Unified Feature Optimization (UFO) [4] points 
out that some downstream tasks are related, it can be 
beneficial to train the foundation model in a multi-task and 
parameter-sharing manner, thus eliminate the requirement 
for huge amount of data for pretraining and reduce the 
adaption cost when transfer to downstream tasks. 
 In this paper, we adopt the AllInOne training paradigm 
to train a foundation model in a multi-task manner, 
acquiring a unified model that has the ability of detection, 
segmentation and fine-grained classification at the same 
time. During training, we find that the backbone gradient 
norm generated from different task may vary greatly,  
making the backbone overly biased towards one specific 
task, thus seriously impact the performance of other tasks. 
To address this problem, we propose the task-level 
backbone-oriented gradient clip paradigm, compared with 
the vanilla gradient clip method which perform gradient 
clip over the overall multi-task gradient, the task-level 
backbone-oriented gradient clip paradigm has two main 
differences: 1) gradient clip is performed independently 
over the gradient generated by each task. 2) the final 
backbone gradient generated from each task are rescaled to 
the same norm scale. Thus during training, each task has 
exact the sample influence on the backbone, avoiding the 
backbone gradient bias problem. Based on the 
experimental results, we argue that this novel gradient clip 
paradigm can relieve the gradient bias problem to some 
extend, achieving decent performance on the three tasks. 
Besides, we also noting the data augmentation conflict 
problem during training, i.e., the combined use of two 

 
TBGC: Task-level Backbone-Oriented Gradient Clip for Multi-Task Foundation 

Model Learning 
 
 

Zelun Zhang*,  Xue Pan 
Huazhong University of Science and Technology 

Wuhan, China 
zhangzelun123@gmail.com, panxue826@163.com 

 



 

 2 

specific data augmentation strategies may lead to a 
performance drop while using exclusively can steadily 
improve the performance, in terms of this issue, we 
propose the multi-branch data augmentation strategies, in 
which conflicting augmentation strategies are placed in 
different branches, thus the model can gain benefits from 
the originally conflicting strategies. 

2. Method 

2.1. Framework Overview 

The track1 of CVPR2023 Foundation Model challenge 
requires training a model in the AllInOne multi-task 
manner, i.e., the unified model must have the ability of 
detection, semantic segmentation and fine-grained 
classification at the same time. The detection evaluation is 
conducted on the Tsinghua-Tencent100k dataset, taking 
mAP50 as metric. Semantic segmentation and fine-grained 
classification are evaluated on the BDD 100K dataset and 
Stanford Cars dataset respectively, using top1 accuracy 
and mIoU as evaluation metrics. 

Model Structure. We adopt the common single-base 
but multiple-heads paradigm in terms of the model 
structure design, i.e., the model has a shared bottom 
(backbone) for feature extraction and each task has its own 
exclusive prediction head. We adopt the InternImage[5] 
series as backbone, Mask2Former[6] and DINO[7] are 
used for semantic segmentation head and detection head 
respectively, as for the classification head, we simply use a 
MLP with shortcut connection, i.e., the global average 
pooling feature from the last layer of backbone is firstly fed 
into a MLP, then the transformed feature output from the 
MLP and the backbone feature are added to obtain the final 
feature for fine-grained classification, besides, arcface 
loss[9] (with margin set to 0.4) is used. 

Training Process. The training process design is crucial 
for multi-task foundation model learning, both 
computational cost and CUDA memory requirements are 
need to be taken into consideration. Given the computation 
graph of Pytorch takes nonnegligible CUDA memory 
during training, we argue that it’s better to release the 
computation graph when iteration for one task is done. The 
training process we adopted is detailed in Algorithm 1. 

By using this training process, in which each task’s 
computation graph is released immediately after its 
iteration is done, the CUDA memory is greatly saved, we 
thus can use a much larger batchsize. The use of Task-level 
Backbone-oriented Gradient Clip (TBGC) is also shown in 
Algorithm 1, which will be given a detailed description in 
the next section. 

2.2. Task-level Backbone-oriented Gradient Clip 
When training a foundation model in the AllInOne  

Algorithm 1: Training Process with TBGC 
Input: multi-task dataloader D, multi-task model M, 
epochs N, iteration overall gradient recorder R 
 
1:  initialize parameters in M 
2:  for i ← 1 to N do 
3:      for multitask-data in D do 
4:          zero initialize R 
5:          for task-data, task-label in multitask-data do 
6:              task-out = M(task-data) 
7:              loss = loss(task-out, task-label) 
8:              loss.backward() # release computation graph 
9:              TBGC for M.grads 
10:            accumulate clipped M.grads to R 
11:            zero initialize M.grads 
12:         end 
13:         update M.grads with R 
14:         M.step() 
15:     end 
16: end 

 
multi-task manner, we find that the gradient norm from 
different task may vary greatly (as shown in Figure 1), thus 
leading the backbone to be overly biased to one specific 
task. Here we refer to “backbone gradient norm” as the l2 
norm of the gradients on the backbone parameters. As 
shown in Figure 1, during training, the detection task has 
the largest backbone gradient norm, much larger than the 
counterparts of segmentation and classification. Besides, 
segmentation has a larger backbone gradient norm than 
classification. This explains why the detection task has a 
much better performance than the others and classification 
has the worst performance when the vanilla gradient clip 
method is adopted.  

Vanilla Gradient Clip. Gradient clip is a common used 
strategy when training the transformer-series backbones. 
However, when it comes to the multi-task scenario 
discussed above, the vanilla gradient clip method suffers 
from the gradient norm bias problem, i.e., after the vanilla 
gradient clip, the clipped gradient still bias to the task 
which originally has the largest gradient norm. In summary, 
the vanilla gradient clip method under multi-task scenario 
can be formulated as: 

 

𝐺𝑟𝑎𝑑!"#$$%& = 	
𝐺𝑟𝑎𝑑&%' + 𝐺𝑟𝑎𝑑(%) + 𝐺𝑟𝑎𝑑!"(

(𝐺𝑟𝑎𝑑&%' + 𝐺𝑟𝑎𝑑(%) + 𝐺𝑟𝑎𝑑!"((*
× 𝑆 (1) 

 
, 𝑆  stands for max norm, 𝐺𝑟𝑎𝑑!"# , 𝐺𝑟𝑎𝑑$"%  and 𝐺𝑟𝑎𝑑&'$ 
stands for the gradients generated from each task in a multi-
task iteration. 𝐺𝑟𝑎𝑑&'())"! stands for the final gradient used 
to update model parameters.  
 TBGC. The proposed Task-level Backbone-oriented 
Gradient Clip paradigm has two steps. Firstly, the vanilla 
gradient clip is conducted on each task independently.  
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Figure 1. The backbone gradient norm of each task during training, 
samples are collected from 900 iterations from 100 epochs. 
 
Secondly, the backbone gradient norm of each task is 
rescaled to the same norm scale. Thus each task has the 
exact same influence on the backbone parameters. In 
summary, the task-level backbone-oriented gradient clip 
paradigm can be formulated as: 
 

𝐺𝑟𝑎𝑑!"#$ =
𝐺𝑟𝑎𝑑!"#

‖𝐺𝑟𝑎𝑑!"#‖%
 (2) 

𝐺𝑟𝑎𝑑!"#
&'())"! = 𝐺𝑟𝑎𝑑!"#$ ×

𝑆
𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒_𝑔𝑟𝑎𝑑_𝑛𝑜𝑟𝑚(𝐺𝑟𝑎𝑑!"#$ )

 (3) 

 
, where 𝐺𝑟𝑎𝑑!"# is the original gradient generated from the 
detection task, 𝑆 stands for max norm, 𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒_𝑔𝑟𝑎𝑑_𝑛𝑜𝑟𝑚 
stands for a function that calculate the backbone gradient 
norm given the all model parameter gradients. It is worth 
noting that the scaling step (formula 3) is backbone-
oriented, i.e., the backbone gradient norm will have the 
exact value of 𝑆 after TBGC. We obtain the segmentation 
and classification gradients in a similar way, finally, the 
overall gradient used to update the multi-task model is 
formulated as: 
 

𝐺𝑟𝑎𝑑!"#$$%& = 𝐺𝑟𝑎𝑑𝑑𝑒𝑡
𝑐𝑙𝑖𝑝𝑝𝑒𝑑 + 𝐺𝑟𝑎𝑑𝑠𝑒𝑔𝑐𝑙𝑖𝑝𝑝𝑒𝑑 + 𝐺𝑟𝑎𝑑𝑐𝑙𝑠

𝑐𝑙𝑖𝑝𝑝𝑒𝑑 (4) 

 
, where 𝐺𝑟𝑎𝑑!"#$$%&  stands for the final overall gradient, 
𝐺𝑟𝑎𝑑3"4

&'())"! and 𝐺𝑟𝑎𝑑&'3&'())"! stands for the gradients generated 
by TBGC for segmentation and classification respectively. 
Compared with the vanilla gradient clip method, TBGC 
eliminates the gradient norm bias problem and make sure 
that every task has the exact save level of influence on the 
backbone parameters. Experiments in the next section will 
demonstrate the effectiveness of TBGC. 

2.3. Multi-Branch Augmentation Paradigm 

Data augmentation is a commonly used strategy to boost 
model performance. However, during training we find that        

the combined use of several augmentations might lead to a 
performance drop while using exclusively will improve the 
performance steadily. We argue that it is because some 
augmentation strategies are so strong that they cause a huge 
change to the original data distribution, and a combined use 
of them will make the distribution of training data differ 
hugely from the counterpart of testing data, thus harm the 
model performance. 
 Here we propose the multi-branch data augmentation 
paradigm. In this paradigm, each branch can have one and 
only one strong augmentation, such as Mosaic and 
Autoaugment. RandomChoice is adopted to combine these 
branches. During training, the data flow can only pass 
through one branch, only transformed by one strong 
augmentation, thus the model can gain benefits from 
multiple strong augmentations and can avoid the train-test 
inconsistency problem. Besides, we can introduce 
curriculum learning to the muti-branch paradigm, i.e., at 
the early stage of training, harder branch may have a larger 
probability while at end stage the easier branch may 
dominate. Table 1 shows the multi-branch augmentation 
strategies we used. 
 

detection segmentation 

branch1 branch2 branch1 branch2 

MultiScale Mosaic MultiScale Mosaic 

Hflip MixUp RandomCrop RandomCrop 

AutoAugment Hflip Rotate Hflip 

Noise Noise Noise Noise 
Table 1. the multi-branch data augmentation strategies used for 
CVPR2023 foundation model challenge. 
 
Only detection and segmentation adopt the multi-branch 
augmentation paradigm, we use common augmentation 
paradigm for classification. 

3. Experiments 

Hyperparameter Settings. To evaluate our method, 
we conduct ablation experiments for the task-level 
backbone-oriented gradient clip paradigm and multi-
branch augmentation strategy respectively. Unless 
specifically stated, we adopt the following 
hyperparameter settings. The training batchsize for 
detection, segmentation and fine-grained classification is 
2, 2 and 8 per GPU respectively. The learning rate is 
0.0001, weight decay is set to 1e-4. The cosine learning 
rate decay scheduler with warm up is adopted, 
specifically, the first 5 epochs is used for learning rate 
warm up, with a warm up ratio of 0.001, the model is 
trained for 100 epochs. We set the max norm hyper 
parameter to be 0.1 for both vanilla gradient clip and  
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Method Overall Det Seg Cls 

vanilla 77.50 86.78 56.67 89.06 

TBGC* 79.82 87.60 58.85 92.99 

TBGC 80.45 87.88 60.17 93.31 
Table 2. The ablation study for vanilla gradient clip and TBGC. Det, Seg 
and Cls stands for detection, segmentation and classification respectively, 
they are evaluated with mAP50, mIoU and top-1 accuracy. * means 
TBGC without backbone-oriented norm rescaling. 
 
task-level backbone-oriented gradient clip. Besides, we 
adopt the adamW optimizer, the backbone is initialized 
with the pretrained parameters from ImageNet, and a 
differential learning rate is adopted, the backbone learning 
rate is 0.1 times of the base learning rate. 

Data Augmentation. Unless specifically stated, we 
adopt a plain data augmentation strategy. For detection, we 
use multi-scale training with the long edge set to 608 and 
the short edge randomly sampled from [480, 608], 
horizontal flip is also adopted. For segmentation, we use 
random resize with ratio range sample from [0.5, 2.0], 
horizontal flip and color distort is adopted. For 
classification, we directly resize the image to (448, 448), 
and then go through random erase and horizontal flip. 
 Experiment Metric. In our experiment, the detection 
task is evaluated with mAP50, the classification task is 
evaluated with top-1 accuracy and the segmentation task is 
evaluated with mIoU. Finally, metrics from the three tasks 
were averaged to get the overall metric. 

3.1. Results of TBGC 

Table 2 shows the comparison between different 
gradient clip methods, “vanilla” stands for the vanilla 
gradient clip method, i.e., gradient clip is conducted 
directly on the overall multi-task gradient. “TBGC*” 
stands for TBGC without backbone-oriented norm 
rescaling. The result shows the effectiveness of TBGC, 
without bells and whistles, the fine-grained classification 
task and segmentation task gains an increment of 4.25% 
and 3.5% respectively, without harming the performance 
of detection. 

Even though performing vanilla gradient clip for each 
task independently is enough to relieve the gradient norm 
bias problem, given the fact that each task’s exclusive 
prediction head has different amount of parameters, vanilla 
gradient clip cannot assure the task-level backbone 
gradient norm is all the same. Table 2 compare the 
performance between TBGC and TBGC*, TBGC* is fairly 
enough to give a decent performance, however, TBGC 
boost the overall performance further, which shows the 
importance of each task having the exact same influence 
on the backbone parameters. 
 

Method Overall Det Seg Cls 

parallel 85.79 94.04 68.29 95.03 

MultiBranch 86.32 95.08 68.67 95.2 
Table 3. The comparison between parallel augmentation strategy and 
multi-branch augmentation strategy. 

3.2. Results of Multi-Branch Augmentation 

Table 3 shows the comparison between parallel 
augmentation and multi-branch augmentation, the 
augmentations described in section 2.3 is adopted. 
Compared with the parallel strategy, the multi-branch 
counterpart achieves a 0.53 performance gain, which 
demonstrates that it is better to place strong augmentations 
in different branches. 

4. Conclusion 
In this paper, a novel gradient clip and data 

augmentation paradigm is proposed, experiments show the 
effectiveness of our proposed methods. 
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